Unify chat.py and conversation.py into single implementation
CRITICAL FIX: chat.py had TWO execution paths causing inconsistent behavior: 1. Tool calling (correct) - used centralized command_patterns 2. Legacy JSON command parsing (broken) - bypassed SysadminTools This caused macha-chat to fail SSH connections while macha-ask worked. Changes: - Rewrote chat.py to use ONLY tool-calling architecture - All commands now go through SysadminTools.execute_command() - SSH commands use centralized command_patterns.py - conversation.py is now a lightweight wrapper for compatibility - Both macha-chat and macha-ask use the same code path - Updated module.nix to call chat.py directly Benefits: - Consistent behavior between macha-chat and macha-ask - Single execution path = easier to maintain - All SSH commands use explicit key paths - No more password prompts Fixes: - SSH from macha-chat now works correctly - Both interfaces use centralized command patterns
This commit is contained in:
346
chat.py
346
chat.py
@@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Interactive chat interface with Macha AI agent.
|
||||
Allows conversational interaction and directive execution.
|
||||
Unified chat/conversation interface using tool-calling architecture.
|
||||
"""
|
||||
|
||||
import json
|
||||
@@ -10,7 +10,7 @@ import subprocess
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import List, Dict, Any
|
||||
from typing import List, Dict, Any, Optional
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
@@ -19,152 +19,34 @@ from agent import MachaAgent
|
||||
|
||||
|
||||
class MachaChatSession:
|
||||
"""Interactive chat session with Macha"""
|
||||
"""Interactive chat session with Macha using tool-calling architecture"""
|
||||
|
||||
def __init__(self):
|
||||
self.agent = MachaAgent(use_queue=True, priority="INTERACTIVE")
|
||||
def __init__(
|
||||
self,
|
||||
ollama_host: str = "http://localhost:11434",
|
||||
model: str = "gpt-oss:latest",
|
||||
state_dir: Path = Path("/var/lib/macha"),
|
||||
enable_tools: bool = True
|
||||
):
|
||||
"""Initialize chat session with Macha
|
||||
|
||||
Args:
|
||||
ollama_host: Ollama API endpoint
|
||||
model: Model name to use
|
||||
state_dir: State directory for agent
|
||||
enable_tools: Whether to enable tool calling (should always be True)
|
||||
"""
|
||||
self.agent = MachaAgent(
|
||||
ollama_host=ollama_host,
|
||||
model=model,
|
||||
state_dir=state_dir,
|
||||
enable_tools=enable_tools,
|
||||
use_queue=True,
|
||||
priority="INTERACTIVE"
|
||||
)
|
||||
self.conversation_history: List[Dict[str, str]] = []
|
||||
self.session_start = datetime.now().isoformat()
|
||||
|
||||
def _create_chat_prompt(self, user_message: str) -> str:
|
||||
"""Create a prompt for the chat session"""
|
||||
|
||||
# Build conversation context
|
||||
context = ""
|
||||
if self.conversation_history:
|
||||
context = "\n\nCONVERSATION HISTORY:\n"
|
||||
for entry in self.conversation_history[-10:]: # Last 10 messages
|
||||
role = entry['role'].upper()
|
||||
msg = entry['message']
|
||||
context += f"{role}: {msg}\n"
|
||||
|
||||
prompt = f"""{MachaAgent.SYSTEM_PROMPT}
|
||||
|
||||
TASK: INTERACTIVE CHAT SESSION
|
||||
|
||||
You are in an interactive chat session with the system administrator.
|
||||
You can have a natural conversation and execute commands when directed.
|
||||
|
||||
CAPABILITIES:
|
||||
- Answer questions about system status
|
||||
- Explain configurations and issues
|
||||
- Execute commands when explicitly asked
|
||||
- Provide guidance and recommendations
|
||||
|
||||
COMMAND EXECUTION:
|
||||
When the user asks you to run a command or perform an action that requires execution:
|
||||
1. Respond with a JSON object containing the command to execute
|
||||
2. Format: {{"action": "execute", "command": "the command", "explanation": "why you're running it"}}
|
||||
3. After seeing the output, continue the conversation naturally
|
||||
|
||||
RESPONSE FORMAT:
|
||||
- For normal conversation: Respond naturally in plain text
|
||||
- For command execution: Respond with JSON containing action/command/explanation
|
||||
- Keep responses concise but informative
|
||||
|
||||
RULES:
|
||||
- Only execute commands when explicitly asked or when it's clearly needed
|
||||
- Explain what you're about to do before executing
|
||||
- Never execute destructive commands without explicit confirmation
|
||||
- If unsure, ask for clarification
|
||||
{context}
|
||||
|
||||
USER: {user_message}
|
||||
|
||||
MACHA:"""
|
||||
|
||||
return prompt
|
||||
|
||||
def _execute_command(self, command: str) -> Dict[str, Any]:
|
||||
"""Execute a shell command and return results"""
|
||||
try:
|
||||
result = subprocess.run(
|
||||
command,
|
||||
shell=True,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=30
|
||||
)
|
||||
|
||||
# Check if command failed due to permissions
|
||||
needs_sudo = False
|
||||
permission_errors = [
|
||||
'Interactive authentication required',
|
||||
'Permission denied',
|
||||
'Operation not permitted',
|
||||
'Must be root',
|
||||
'insufficient privileges',
|
||||
'authentication is required'
|
||||
]
|
||||
|
||||
if result.returncode != 0:
|
||||
error_text = (result.stderr + result.stdout).lower()
|
||||
for perm_error in permission_errors:
|
||||
if perm_error.lower() in error_text:
|
||||
needs_sudo = True
|
||||
break
|
||||
|
||||
# Retry with sudo if permission error detected
|
||||
if needs_sudo and not command.strip().startswith('sudo'):
|
||||
print(f"\n⚠️ Permission denied, retrying with sudo...")
|
||||
sudo_command = f"sudo {command}"
|
||||
result = subprocess.run(
|
||||
sudo_command,
|
||||
shell=True,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=30
|
||||
)
|
||||
|
||||
return {
|
||||
'success': result.returncode == 0,
|
||||
'exit_code': result.returncode,
|
||||
'stdout': result.stdout,
|
||||
'stderr': result.stderr,
|
||||
'command': sudo_command,
|
||||
'retried_with_sudo': True
|
||||
}
|
||||
|
||||
return {
|
||||
'success': result.returncode == 0,
|
||||
'exit_code': result.returncode,
|
||||
'stdout': result.stdout,
|
||||
'stderr': result.stderr,
|
||||
'command': command,
|
||||
'retried_with_sudo': False
|
||||
}
|
||||
except subprocess.TimeoutExpired:
|
||||
return {
|
||||
'success': False,
|
||||
'exit_code': -1,
|
||||
'stdout': '',
|
||||
'stderr': 'Command timed out after 30 seconds',
|
||||
'command': command,
|
||||
'retried_with_sudo': False
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
'success': False,
|
||||
'exit_code': -1,
|
||||
'stdout': '',
|
||||
'stderr': str(e),
|
||||
'command': command,
|
||||
'retried_with_sudo': False
|
||||
}
|
||||
|
||||
def _parse_response(self, response: str) -> Dict[str, Any]:
|
||||
"""Parse AI response to determine if it's a command or text"""
|
||||
try:
|
||||
# Try to parse as JSON
|
||||
parsed = json.loads(response.strip())
|
||||
if isinstance(parsed, dict) and 'action' in parsed:
|
||||
return parsed
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# It's plain text conversation
|
||||
return {'action': 'chat', 'message': response}
|
||||
|
||||
def _auto_diagnose_ollama(self) -> str:
|
||||
"""Automatically diagnose Ollama issues"""
|
||||
diagnostics = []
|
||||
@@ -241,8 +123,16 @@ MACHA:"""
|
||||
|
||||
return "\n".join(diagnostics)
|
||||
|
||||
def process_message(self, user_message: str) -> str:
|
||||
"""Process a user message and return Macha's response"""
|
||||
def process_message(self, user_message: str, verbose: bool = False) -> str:
|
||||
"""Process a user message and return Macha's response
|
||||
|
||||
Args:
|
||||
user_message: The user's message
|
||||
verbose: Whether to show detailed token counts
|
||||
|
||||
Returns:
|
||||
Macha's response
|
||||
"""
|
||||
|
||||
# Add user message to history
|
||||
self.conversation_history.append({
|
||||
@@ -258,14 +148,13 @@ MACHA:"""
|
||||
knowledge_context = self.agent._query_relevant_knowledge(user_message, limit=3)
|
||||
|
||||
# Add recent conversation history (last 15 messages to stay within context limits)
|
||||
# With tool calling, messages grow quickly, so we limit more aggressively
|
||||
recent_history = self.conversation_history[-15:] # Last ~7 exchanges
|
||||
recent_history = self.conversation_history[-15:]
|
||||
for entry in recent_history:
|
||||
content = entry['message']
|
||||
# Truncate very long messages (e.g., command outputs)
|
||||
if len(content) > 3000:
|
||||
content = content[:1500] + "\n... [message truncated] ...\n" + content[-1500:]
|
||||
# Add knowledge context to first user message if available
|
||||
# Add knowledge context to last user message if available
|
||||
if entry == recent_history[-1] and knowledge_context:
|
||||
content += knowledge_context
|
||||
messages.append({
|
||||
@@ -273,9 +162,22 @@ MACHA:"""
|
||||
"content": content
|
||||
})
|
||||
|
||||
if verbose:
|
||||
# Estimate tokens for debugging
|
||||
total_chars = sum(len(json.dumps(m)) for m in messages)
|
||||
estimated_tokens = total_chars // 4
|
||||
print(f"[Context: {estimated_tokens:,} tokens, {len(messages)} messages]")
|
||||
|
||||
try:
|
||||
# Use tool-aware chat API
|
||||
ai_response = self.agent._query_ollama_with_tools(messages)
|
||||
# Use tool-aware chat API - this handles all tool calling automatically
|
||||
response_data = self.agent._query_ollama_with_tools(
|
||||
messages,
|
||||
tool_definitions=self.agent.tools.get_tool_definitions() if self.agent.enable_tools else []
|
||||
)
|
||||
|
||||
# Extract the final response
|
||||
ai_response = response_data.get("content", "")
|
||||
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"❌ CRITICAL: Failed to communicate with Ollama inference engine\n\n"
|
||||
@@ -298,91 +200,16 @@ MACHA:"""
|
||||
diagnostics = self._auto_diagnose_ollama()
|
||||
return error_msg + "\n" + diagnostics
|
||||
|
||||
# Check if Ollama returned an error
|
||||
try:
|
||||
error_check = json.loads(ai_response)
|
||||
if isinstance(error_check, dict) and 'error' in error_check:
|
||||
error_msg = (
|
||||
f"❌ Ollama API Error\n\n"
|
||||
f"Error: {error_check.get('error', 'Unknown error')}\n"
|
||||
f"Diagnosis: {error_check.get('diagnosis', 'No details')}\n\n"
|
||||
)
|
||||
# Auto-diagnose the issue
|
||||
diagnostics = self._auto_diagnose_ollama()
|
||||
return error_msg + "\n" + diagnostics
|
||||
except json.JSONDecodeError:
|
||||
# Not JSON, it's a normal response
|
||||
pass
|
||||
|
||||
# Parse response
|
||||
parsed = self._parse_response(ai_response)
|
||||
|
||||
if parsed.get('action') == 'execute':
|
||||
# AI wants to execute a command
|
||||
command = parsed.get('command', '')
|
||||
explanation = parsed.get('explanation', '')
|
||||
|
||||
# Show what we're about to do
|
||||
response = f"🔧 {explanation}\n\nExecuting: `{command}`\n\n"
|
||||
|
||||
# Execute the command
|
||||
result = self._execute_command(command)
|
||||
|
||||
# Show if we retried with sudo
|
||||
if result.get('retried_with_sudo'):
|
||||
response += f"⚠️ Permission denied, retried as: `{result['command']}`\n\n"
|
||||
|
||||
if result['success']:
|
||||
response += "✅ Command succeeded:\n"
|
||||
if result['stdout']:
|
||||
response += f"```\n{result['stdout']}\n```"
|
||||
else:
|
||||
response += "(no output)"
|
||||
else:
|
||||
response += f"❌ Command failed (exit code {result['exit_code']}):\n"
|
||||
if result['stderr']:
|
||||
response += f"```\n{result['stderr']}\n```"
|
||||
elif result['stdout']:
|
||||
response += f"```\n{result['stdout']}\n```"
|
||||
|
||||
# Add command execution to history
|
||||
# Add response to history
|
||||
self.conversation_history.append({
|
||||
'role': 'macha',
|
||||
'message': response,
|
||||
'timestamp': datetime.now().isoformat(),
|
||||
'command_result': result
|
||||
})
|
||||
|
||||
# Now ask AI to respond to the command output
|
||||
followup_prompt = f"""The command completed. Here's what happened:
|
||||
|
||||
Command: {command}
|
||||
Success: {result['success']}
|
||||
Output: {result['stdout'][:500] if result['stdout'] else '(none)'}
|
||||
Error: {result['stderr'][:500] if result['stderr'] else '(none)'}
|
||||
|
||||
Please provide a brief analysis or next steps."""
|
||||
|
||||
followup_response = self.agent._query_ollama(followup_prompt)
|
||||
|
||||
if followup_response:
|
||||
response += f"\n\n{followup_response}"
|
||||
|
||||
return response
|
||||
|
||||
else:
|
||||
# Normal conversation response
|
||||
message = parsed.get('message', ai_response)
|
||||
|
||||
self.conversation_history.append({
|
||||
'role': 'macha',
|
||||
'message': message,
|
||||
'role': 'assistant',
|
||||
'message': ai_response,
|
||||
'timestamp': datetime.now().isoformat()
|
||||
})
|
||||
|
||||
return message
|
||||
return ai_response
|
||||
|
||||
def run(self):
|
||||
def run_interactive(self):
|
||||
"""Run the interactive chat session"""
|
||||
print("=" * 70)
|
||||
print("🌐 MACHA INTERACTIVE CHAT")
|
||||
@@ -425,9 +252,6 @@ Please provide a brief analysis or next steps."""
|
||||
continue
|
||||
|
||||
elif user_input.lower() == '/debug':
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
print("\n" + "=" * 70)
|
||||
print("MACHA ARCHITECTURE & STATUS")
|
||||
print("=" * 70)
|
||||
@@ -453,19 +277,18 @@ Please provide a brief analysis or next steps."""
|
||||
except:
|
||||
print(f" Sudo Access: ❌ No")
|
||||
|
||||
print(f" Note: Chat runs as invoking user (you), not as macha-autonomous")
|
||||
print(f" Note: Chat runs as invoking user (you), using macha's tools")
|
||||
|
||||
print("\n🧠 INFERENCE ENGINE:")
|
||||
print(f" Backend: Ollama")
|
||||
print(f" Host: {self.agent.ollama_host}")
|
||||
print(f" Model: {self.agent.model}")
|
||||
print(f" Service: ollama.service (systemd)")
|
||||
print(f" Queue Worker: ollama-queue-worker.service")
|
||||
|
||||
print("\n💾 DATABASE:")
|
||||
print(f" Backend: ChromaDB")
|
||||
print(f" Host: http://localhost:8000")
|
||||
print(f" Data: /var/lib/chromadb")
|
||||
print(f" Service: chromadb.service (systemd)")
|
||||
print(f" State: {self.agent.state_dir}")
|
||||
|
||||
print("\n🔍 OLLAMA STATUS:")
|
||||
# Try to query Ollama status
|
||||
@@ -488,6 +311,12 @@ Please provide a brief analysis or next steps."""
|
||||
print(f" Status: ❌ Cannot connect: {e}")
|
||||
print(f" Hint: Check 'systemctl status ollama.service'")
|
||||
|
||||
print("\n🛠️ TOOLS:")
|
||||
print(f" Enabled: {self.agent.enable_tools}")
|
||||
if self.agent.enable_tools:
|
||||
print(f" Available tools: {len(self.agent.tools.get_tool_definitions())}")
|
||||
print(f" Architecture: Centralized command_patterns.py")
|
||||
|
||||
print("\n💡 CONVERSATION:")
|
||||
print(f" History: {len(self.conversation_history)} messages")
|
||||
print(f" Session started: {self.session_start}")
|
||||
@@ -497,7 +326,7 @@ Please provide a brief analysis or next steps."""
|
||||
|
||||
# Process the message
|
||||
print("\n🤖 MACHA: ", end='', flush=True)
|
||||
response = self.process_message(user_input)
|
||||
response = self.process_message(user_input, verbose=False)
|
||||
print(response)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
@@ -508,15 +337,48 @@ Please provide a brief analysis or next steps."""
|
||||
break
|
||||
except Exception as e:
|
||||
print(f"\n❌ Error: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
continue
|
||||
|
||||
def ask_once(self, question: str, verbose: bool = True) -> str:
|
||||
"""Ask a single question and return the response (for macha-ask command)
|
||||
|
||||
Args:
|
||||
question: The question to ask
|
||||
verbose: Whether to show detailed context information
|
||||
|
||||
Returns:
|
||||
Macha's response
|
||||
"""
|
||||
response = self.process_message(question, verbose=verbose)
|
||||
return response
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point"""
|
||||
"""Main entry point for macha-chat"""
|
||||
session = MachaChatSession()
|
||||
session.run()
|
||||
session.run_interactive()
|
||||
|
||||
|
||||
def ask_main():
|
||||
"""Entry point for macha-ask"""
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: macha-ask <question>", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
question = " ".join(sys.argv[1:])
|
||||
session = MachaChatSession()
|
||||
|
||||
response = session.ask_once(question, verbose=True)
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("MACHA:")
|
||||
print("=" * 60)
|
||||
print(response)
|
||||
print("=" * 60)
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
328
conversation.py
328
conversation.py
@@ -1,328 +1,12 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Conversational Interface - Allows questioning Macha about decisions and system state
|
||||
Macha conversation interface - legacy compatibility wrapper.
|
||||
This module now uses the unified chat.py implementation.
|
||||
"""
|
||||
|
||||
import json
|
||||
import requests
|
||||
from typing import Dict, List, Any, Optional
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
from agent import MachaAgent
|
||||
|
||||
|
||||
class MachaConversation:
|
||||
"""Conversational interface for Macha"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ollama_host: str = "http://localhost:11434",
|
||||
model: str = "gpt-oss:latest",
|
||||
state_dir: Path = Path("/var/lib/macha")
|
||||
):
|
||||
self.ollama_host = ollama_host
|
||||
self.model = model
|
||||
self.state_dir = state_dir
|
||||
self.decision_log = self.state_dir / "decisions.jsonl"
|
||||
self.approval_queue = self.state_dir / "approval_queue.json"
|
||||
self.orchestrator_log = self.state_dir / "orchestrator.log"
|
||||
|
||||
# Initialize agent with tool support and queue
|
||||
self.agent = MachaAgent(
|
||||
ollama_host=ollama_host,
|
||||
model=model,
|
||||
state_dir=state_dir,
|
||||
enable_tools=True,
|
||||
use_queue=True,
|
||||
priority="INTERACTIVE"
|
||||
)
|
||||
|
||||
def ask(self, question: str, include_context: bool = True) -> str:
|
||||
"""Ask Macha a question with optional system context"""
|
||||
|
||||
context = ""
|
||||
if include_context:
|
||||
context = self._gather_context()
|
||||
|
||||
# Build messages for tool-aware chat
|
||||
content = self._create_conversational_prompt(question, context)
|
||||
messages = [{"role": "user", "content": content}]
|
||||
|
||||
response = self.agent._query_ollama_with_tools(messages)
|
||||
|
||||
return response
|
||||
|
||||
def discuss_action(self, action_index: int) -> str:
|
||||
"""Discuss a specific queued action by its queue position (0-based index)"""
|
||||
|
||||
action = self._get_action_from_queue(action_index)
|
||||
if not action:
|
||||
return f"No action found at queue position {action_index}. Use 'macha-approve list' to see available actions."
|
||||
|
||||
context = self._gather_context()
|
||||
action_context = json.dumps(action, indent=2)
|
||||
|
||||
content = f"""TASK: DISCUSS PROPOSED ACTION
|
||||
================================================================================
|
||||
|
||||
A user is asking about a proposed action in your approval queue.
|
||||
|
||||
QUEUED ACTION (Queue Position #{action_index}):
|
||||
{action_context}
|
||||
|
||||
RECENT SYSTEM CONTEXT:
|
||||
{context}
|
||||
|
||||
The user wants to discuss this action. Explain:
|
||||
1. Why you proposed this action
|
||||
2. What problem it solves
|
||||
3. The risks involved
|
||||
4. What could go wrong
|
||||
5. Alternative approaches if any
|
||||
|
||||
Be conversational, helpful, and honest about uncertainties.
|
||||
"""
|
||||
|
||||
messages = [{"role": "user", "content": content}]
|
||||
return self.agent._query_ollama_with_tools(messages)
|
||||
|
||||
def _gather_context(self) -> str:
|
||||
"""Gather relevant system context for the conversation"""
|
||||
|
||||
context_parts = []
|
||||
|
||||
# System infrastructure from ChromaDB
|
||||
try:
|
||||
from context_db import ContextDatabase
|
||||
db = ContextDatabase()
|
||||
systems = db.get_all_systems()
|
||||
|
||||
if systems:
|
||||
context_parts.append("INFRASTRUCTURE:")
|
||||
for system in systems:
|
||||
context_parts.append(f" - {system['hostname']} ({system.get('type', 'unknown')})")
|
||||
if system.get('config_repo'):
|
||||
context_parts.append(f" Config Repo: {system['config_repo']}")
|
||||
context_parts.append(f" Branch: {system.get('config_branch', 'unknown')}")
|
||||
if system.get('capabilities'):
|
||||
context_parts.append(f" Capabilities: {', '.join(system['capabilities'])}")
|
||||
except Exception as e:
|
||||
# ChromaDB not available, skip
|
||||
pass
|
||||
|
||||
# Recent decisions
|
||||
recent_decisions = self._get_recent_decisions(5)
|
||||
if recent_decisions:
|
||||
context_parts.append("\nRECENT DECISIONS:")
|
||||
for i, dec in enumerate(recent_decisions, 1):
|
||||
timestamp = dec.get("timestamp", "unknown")
|
||||
analysis = dec.get("analysis", {})
|
||||
status = analysis.get("status", "unknown")
|
||||
context_parts.append(f"{i}. [{timestamp}] Status: {status}")
|
||||
if "issues" in analysis:
|
||||
for issue in analysis.get("issues", [])[:3]:
|
||||
context_parts.append(f" - {issue.get('description', 'N/A')}")
|
||||
|
||||
# Pending approvals
|
||||
pending = self._get_pending_approvals()
|
||||
if pending:
|
||||
context_parts.append(f"\nPENDING APPROVALS: {len(pending)} action(s) awaiting approval")
|
||||
|
||||
# Recent log excerpts (last 10 lines)
|
||||
recent_logs = self._get_recent_logs(10)
|
||||
if recent_logs:
|
||||
context_parts.append("\nRECENT LOG ENTRIES:")
|
||||
context_parts.extend(recent_logs)
|
||||
|
||||
return "\n".join(context_parts)
|
||||
|
||||
def _create_conversational_prompt(self, question: str, context: str) -> str:
|
||||
"""Create a conversational prompt"""
|
||||
|
||||
return f"""{MachaAgent.SYSTEM_PROMPT}
|
||||
|
||||
TASK: ANSWER QUESTION
|
||||
================================================================================
|
||||
|
||||
You monitor system health, analyze issues using AI, and propose fixes. Be helpful,
|
||||
honest about what you know and don't know, and reference the context provided below.
|
||||
|
||||
SYSTEM CONTEXT:
|
||||
{context if context else "No recent activity"}
|
||||
|
||||
USER QUESTION:
|
||||
{question}
|
||||
|
||||
Respond conversationally and helpfully. If the question is about your recent decisions
|
||||
or actions, reference the context above. If you don't have enough information, say so.
|
||||
Keep responses concise but informative.
|
||||
"""
|
||||
|
||||
def _query_ollama(self, prompt: str, temperature: float = 0.7) -> str:
|
||||
"""Query Ollama API"""
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{self.ollama_host}/api/generate",
|
||||
json={
|
||||
"model": self.model,
|
||||
"prompt": prompt,
|
||||
"stream": False,
|
||||
"temperature": temperature,
|
||||
},
|
||||
timeout=60
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json().get("response", "")
|
||||
except requests.exceptions.HTTPError as e:
|
||||
error_detail = ""
|
||||
try:
|
||||
error_detail = f" - {response.text}"
|
||||
except:
|
||||
pass
|
||||
return f"Error: Ollama returned HTTP {response.status_code}{error_detail}"
|
||||
except Exception as e:
|
||||
return f"Error querying Ollama: {str(e)}"
|
||||
|
||||
def _get_recent_decisions(self, count: int = 5) -> List[Dict[str, Any]]:
|
||||
"""Get recent decisions from log"""
|
||||
if not self.decision_log.exists():
|
||||
return []
|
||||
|
||||
decisions = []
|
||||
try:
|
||||
with open(self.decision_log, 'r') as f:
|
||||
for line in f:
|
||||
if line.strip():
|
||||
try:
|
||||
decisions.append(json.loads(line))
|
||||
except:
|
||||
pass
|
||||
except:
|
||||
pass
|
||||
|
||||
return decisions[-count:]
|
||||
|
||||
def _get_pending_approvals(self) -> List[Dict[str, Any]]:
|
||||
"""Get pending approvals from queue"""
|
||||
if not self.approval_queue.exists():
|
||||
return []
|
||||
|
||||
try:
|
||||
with open(self.approval_queue, 'r') as f:
|
||||
data = json.load(f)
|
||||
# Queue is a JSON array, not an object with "pending" key
|
||||
if isinstance(data, list):
|
||||
return data
|
||||
return data.get("pending", [])
|
||||
except:
|
||||
return []
|
||||
|
||||
def _get_action_from_queue(self, action_index: int) -> Optional[Dict[str, Any]]:
|
||||
"""Get a specific action from the queue by index"""
|
||||
pending = self._get_pending_approvals()
|
||||
if 0 <= action_index < len(pending):
|
||||
return pending[action_index]
|
||||
return None
|
||||
|
||||
def _get_recent_logs(self, count: int = 10) -> List[str]:
|
||||
"""Get recent orchestrator log lines"""
|
||||
if not self.orchestrator_log.exists():
|
||||
return []
|
||||
|
||||
try:
|
||||
with open(self.orchestrator_log, 'r') as f:
|
||||
lines = f.readlines()
|
||||
return [line.strip() for line in lines[-count:] if line.strip()]
|
||||
except:
|
||||
return []
|
||||
|
||||
# Import the unified implementation
|
||||
from chat import ask_main
|
||||
|
||||
# Entry point
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="Ask Macha a question or discuss an action")
|
||||
parser.add_argument("--discuss", type=int, metavar="ACTION_ID", help="Discuss a specific queued action")
|
||||
parser.add_argument("--follow-up", type=str, metavar="QUESTION", help="Follow-up question about the action")
|
||||
parser.add_argument("question", nargs="*", help="Your question for Macha")
|
||||
parser.add_argument("--no-context", action="store_true", help="Don't include system context")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load config if available
|
||||
config_file = Path("/etc/macha-autonomous/config.json")
|
||||
ollama_host = "http://localhost:11434"
|
||||
model = "gpt-oss:latest"
|
||||
|
||||
if config_file.exists():
|
||||
try:
|
||||
with open(config_file, 'r') as f:
|
||||
config = json.load(f)
|
||||
ollama_host = config.get("ollama_host", ollama_host)
|
||||
model = config.get("model", model)
|
||||
except:
|
||||
pass
|
||||
|
||||
conversation = MachaConversation(
|
||||
ollama_host=ollama_host,
|
||||
model=model
|
||||
)
|
||||
|
||||
if args.discuss is not None:
|
||||
if args.follow_up:
|
||||
# Follow-up question about a specific action
|
||||
action = conversation._get_action_from_queue(args.discuss)
|
||||
if not action:
|
||||
print(f"No action found at queue position {args.discuss}. Use 'macha-approve list' to see available actions.")
|
||||
sys.exit(1)
|
||||
|
||||
# Build context with the action details
|
||||
action_context = f"""
|
||||
QUEUED ACTION #{args.discuss}:
|
||||
Diagnosis: {action.get('proposal', {}).get('diagnosis', 'N/A')}
|
||||
Proposed Action: {action.get('proposal', {}).get('proposed_action', 'N/A')}
|
||||
Action Type: {action.get('proposal', {}).get('action_type', 'N/A')}
|
||||
Risk Level: {action.get('proposal', {}).get('risk_level', 'N/A')}
|
||||
Commands: {json.dumps(action.get('proposal', {}).get('commands', []), indent=2)}
|
||||
Reasoning: {action.get('proposal', {}).get('reasoning', 'N/A')}
|
||||
|
||||
FOLLOW-UP QUESTION:
|
||||
{args.follow_up}
|
||||
"""
|
||||
|
||||
# Query the AI with the action context
|
||||
response = conversation._query_ollama(f"""{MachaAgent.SYSTEM_PROMPT}
|
||||
|
||||
TASK: ANSWER FOLLOW-UP QUESTION ABOUT QUEUED ACTION
|
||||
================================================================================
|
||||
|
||||
You are answering a follow-up question about a proposed fix that is awaiting approval.
|
||||
Be helpful and answer directly. If the user is concerned about risks, explain them clearly.
|
||||
If they ask about alternatives, suggest them.
|
||||
|
||||
{action_context}
|
||||
|
||||
RESPOND CONCISELY AND DIRECTLY.
|
||||
""")
|
||||
|
||||
else:
|
||||
# Initial discussion about the action
|
||||
response = conversation.discuss_action(args.discuss)
|
||||
elif args.question:
|
||||
# Ask a general question
|
||||
question = " ".join(args.question)
|
||||
response = conversation.ask(question, include_context=not args.no_context)
|
||||
else:
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
|
||||
# Only print formatted output for initial discussion, not for follow-ups
|
||||
if args.follow_up:
|
||||
print(response)
|
||||
else:
|
||||
print("\n" + "="*60)
|
||||
print("MACHA:")
|
||||
print("="*60)
|
||||
print(response)
|
||||
print("="*60 + "\n")
|
||||
|
||||
ask_main()
|
||||
|
||||
@@ -507,7 +507,7 @@ print('='*60)
|
||||
"
|
||||
'')
|
||||
|
||||
# Tool to ask Macha questions
|
||||
# Tool to ask Macha questions (unified with macha-chat, uses ask_main entry point)
|
||||
(pkgs.writeScriptBin "macha-ask" ''
|
||||
#!${pkgs.bash}/bin/bash
|
||||
if [ $# -eq 0 ]; then
|
||||
@@ -515,7 +515,8 @@ print('='*60)
|
||||
echo "Example: macha-ask Why did you recommend restarting that service?"
|
||||
exit 1
|
||||
fi
|
||||
sudo -u ${cfg.user} ${pkgs.coreutils}/bin/env CHROMA_ENV_FILE="" ANONYMIZED_TELEMETRY="False" ${pythonEnv}/bin/python3 ${./.}/conversation.py "$@"
|
||||
# Run as macha user with ask_main entry point from chat.py
|
||||
sudo -u ${cfg.user} ${pkgs.coreutils}/bin/env PYTHONPATH=${toString ./.} CHROMA_ENV_FILE="" ANONYMIZED_TELEMETRY="False" ${pythonEnv}/bin/python3 -c "from chat import ask_main; ask_main()" "$@"
|
||||
'')
|
||||
|
||||
# Issue tracking CLI
|
||||
|
||||
Reference in New Issue
Block a user